

AmeriFlux Data Manager Workshop New Mexico Elevation Gradient (NMEG)

Randy Lefevre
University of New Mexico

12 February 2014

Overview

- New Mexico Elevation Gradient (NMEG) Sites
 - Ecosystems and Instrumentation
 - Six (6) Core Sites: Seg, Ses, Wjs, Mpj, Vcp, and Vcm
- Research Goals
- Our Team
- Significant Disturbances
 - Fire, Insect Outbreaks, and Land Management
 - Southwestern United States Continuing Drought
- Summary of Data Processing Pipeline
- Challenges & Potential AmeriFlux Management Project (AMP) Resources

NMEG Site Locations

Gradient of Temperature and Precipitation

Biomes Representative By NMEG

Tower sites and biomes represented in the NMEG network over a land cover map using data from the Southwest Regional Gap Analysis Project (SWReGAP) (http://earth.gis.usu.edu/swgap).

NMEG Instrumentation & Data

- Tower-based open-path eddy covariance (since 2007)
 - Net Ecosystem Exchange of carbon , Latent Heat flux, Sensible Heat flux
- Carbon pools
 - Aboveground biomass, leaf area index, course/fine woody debris, litter, soil
- Micrometeorological Variables
 - Air T, RH, Net radiation/ components, PAR, Soil T and H₂O profiles
- **Physiology**
 - Leaf-level gas exchange, soil, foliar and bole respiration, sap flow, soil CO₂, chlorophyll fluorescence
- **Detailed Ecosystem Structure and Function**
 - Airborne LiDAR (2011) and QuickBird (5 acquisitions, 2011-13)
 - NDVI and PRI sensors

Radiation

Flux

Leaf Gas

Fluorescence

Biomass

Sap Flow

Litter

Research Goals

- Understand and quantify carbon, water, and energy sources/sinks and uncertainty in southwest US ecosystem dynamics and budgets
- Investigate the response of semi-arid terrestrial ecosystems to climate changes and catastrophic disturbances
- Incorporate remote sensing (airborne and space-based) analyses with flux tower intelligence as both input and validation data for Earth System Models, including Land Surface Models

Our Team

Significant Disturbances and **Land Management**

Grassland (Seg), Aug 2009

Las Conchas, NM 2011

Mixed Conifer (Vcm), 2013

Williams et al., 2010

Insect Outbreak

Chorstoneura occidentalis

Bark Beetle, Pinon Juniper (Mpj), 2013

Grazing / Woody Encroachment / Thinning

Spruce Budworm, Mixed Conifer (Vc) 2009-13

Palo Duro Canyon, Sev LTER, 1928, then 1999 25 years after livestock

"Our" Greatest Disturbance

Southwestern
US is projected
to become
hotter and drier

Data Processing Pipeline

- Current (As Is)
 - Matlab-Based
 - Archive, Assimilate, Gross QC/QA, Local Gap Filling,
 Remote Gap Filling and Partitioning, AmeriFlux Format
 - Max Planck Institute (MPI) Gap Filling & Partitioning
- Near-Term Future Plan (To Be)
 - Python and R-Based
 - Archive, Standardize Pre-Processing and Gross QC, Local Gap Filling, Fine-Tune QC, Partition, AmeriFlux Format
 - Gap Filling and Partitioning Internally

Challenges & AmeriFlux Help

- Keeping our instruments and sensors in peak performance through varying environmental conditions
 - Real-time diagnostics and erroneous data flagging
- Large amounts of diverse data
 - Verification and Validation of data at each step in the process
- Data analysis and visualization capabilities
- Equipment and instrumentation emergencies